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We would like in this note to call attention to a somewhat surprising
phenomenon concerning the completeness of a set of translates of a given
function. With I an interval, f a continuous function defined on a slightly
larger interval, and {tk } an infinite sequence of distinct numbers tending to
zero, we consider the restriction to I of the translates off by the amounts
{tk }, viewing them as members of C(I), the space of all continuous functions
on I. In general, of course, this yields too special a collection of functions for
completeness in C(l). Nevertheless, we will show that for f in a certain
class, these translates are complete.

THEOREM. Let I denote thejinite interval [ x I ~ A, let B > A, and suppose
{tk } to be an infinite sequence of distinct points in the interval I x I ~ B - A,
approaching O. Iff(x) ~ 0 is the restriction to I x I ~ B of afunctionf*(x),
analytic and integrable over the x-axis, then the translates {f(tk - x)} are
complete in C(l).

Proof By the Hahn-Banach and Riesz Representation Theorems, a
collection of functions is complete in C(l) if and only if the only bounded
measure }-t(x) which annihilates them all is}-t = O. We will prove the theorem
in this form. Accordingly, suppose }-t(x) to be a bounded measure satisfying

k = 1,2,•... (1)

Let us, for definiteness, setf(x) 0= 0 in I x [ > B, and consider the continuous
function get) = fd(t - x) d}-t(x). We observe that the values of get) in
I t I ~ B - A depend on those off in the interval I x I ~ B only. Hence, on
introducing

g*(t) = J/*(t - x) d}-t(x),

438
© 1972 by Academic Press, Inc.

(2)



ON THE COMPLETENESS OF A SET OF TRANSLATES 439

we find that in the interval I t I ~ B - A the functions g and g* coincide,
so that, by (1), g*(t) vanishes at the points {tk }. But sincef* is analytic on
the axis, so is g*, and its vanishing on a real bounded infinite set implies its
vanishing identically. Taking the Fourier transform of (2), and denoting
by F* and M the transforms of f* and fL respectively, we conclude that
F*(u) M(u) '= O. Since fL has a compact support, M(u), being the restriction
to the u-axis of an entire function in the u + iv plane, has only isolated zeros;
also F*(u) ~ 0, is bounded and continuous. Consequently, F*M vanishes
identically only if M does so, whereupon fL = O. This concludes the proof of
the Theorem. Of course, completeness of these translates in D'(I),
1 ~ p < co, follows analogously. We remark that the example f(x) '== 1
for I x I ~ B shows that the integrability condition imposed on f * is not
entirely superfluous. At the same time, there exist functions which approxi··
mate I arbitrarily closely on I x I ~ B and have an integrable analytic
extension. The phenomenon described by the theorem is therefore not stable.

If {A.k } is a regularly distributed set of points of unit density, and S is a
single interval whose measure exceeds 277", we cannot expect the exponentials
{e iAk"'} to be complete in C(S). Completeness is possible, however, when S is
the union of several intervals [2]. An application of the preceding theorem
allows us to construct another example of this behavior:

COROLLARY. Let f(x) ~ 0 coincide in i x! ~ 77" with a function analytic
and integrable on the x-axis; set f - 0 in Ixi> 77", and let F(u) be the Fourier
transform off(x). Extending F to an enrirefunction in the w = u + iv plane,
let {A.k } denote the set of all zeros ofF, and n" the order of the zero Ak • Given
€ > 0, let S, of total measure 47T - 4€, consist of the tlVO intervals
I x ± 77" I ~ 77" - €. Then the collection offunctions

is complete in C(S).

Outline of Proof As in the proof of the preceding result, suppose that
fLeX) is a bounded measure supported on S which annihilates all of the
functions in E; our goal is to show that fL '= O. To this end, we let M(u) be the
Fourier transform of fL,

M(u) = .~ rei"'" dfL(X),
"V 277" J S

and extend M to an entire function of exponential type in the w~plane. The
annihilation condition ensures that the zeros of M include those of F,
counting multiplicity, so that MIF is entire. We now choose a sufficiently
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smooth function hex) -:- 0, supported in I x I ~ E/2, whose Fourier trans­
form H(u) decreases so rapidly that H(MIF) is square-integrable on the real
line and ofexponential type. The possibility of such a choice follows from the
general results of [1], though, in the present simple case, it can be proved
directly. By the Paley-Wiener theorem, the function G = H(MIF) is the
Fourier transform of some g(x), square-integrable and of compact support.
Applying the inverse Fourier transform to the identity GF = HM yields

r g(x)f(t - x) dx = f h(t - x) df.L(x).
-co s

(4)

Since f is assumed to be analytic on Ix I~ 7T, its support can be contained in
no proper subinterval, and, by the choice of h, the convolution on the right­
hand side of (4) vanishes for I t I > 27T - (E/2); thus the Titchmarsh convo­
lution theorem shows that the compact support of g lies in the interval
Ix I ~ 7T - (E/2). Referring again to the right-hand side of (4), we note that
it also vanishes for I t I < E/2, so that fl",I";;;".-«/2) g(x)f(t - x) dx = °for t
in a neighborhood of the origin. Now the preceding completeness theorem
implies that g(x) - 0, whence M and so also f.L vanish identically. The
Corollary is established. We emphasize that, since F is of exponential type 7T,

the density of {A,,} cannot exceed 1.
In considering the zeros of an entire function F of exponential type, it is,

broadly speaking, only their density that is delimited by the type; wide
latitude is available in choosing or perturbing their position. When F is
integrable on the real line, the type may be related to the diameter of the
supporting set S of the Fourier transform ofF. In this context, the Corollary
may be interpreted as showing that requiring S to omit an interval, though
not affecting the allowed growth of the function F, nevertheless exerts
an influence, precise yet mysterious, on the location of its zeros.
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